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STUDIES ON THE FORMATION OF [5]METACYCLOPHANE
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Abstract: Base induced elimination of HCl from the dichloro[5.3.1]propellane 3a gives a mixtu-

re of [Slmetacyclophane (l)and tetrahydrocyclopentacyclooctenes (2}, while the ste-
reoisomeric 3b affords 1 quantitatively.

Recently, we reported that suitable halo[n.3.l]propellenes can be converted by base-induced
2
elimination to short-bridged metacyclophanes (n=5,6)1, or to the analogous Dewar 1somer (n=4)".
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In the latter case the course of the reaction depends remarkably on the stereochemistry of the
chloro substituent; therefore we decided to investigate the influence of the stereochemistry
of the halogen 1in the synthesis of [5]metacyclophane (1) . Contrary to our initial expectations,
the reactions 1in the two closely related, homologous series take a rather different course; no
Dewar isomer of 1 was obtained, but A'and tetrahydrocyclopentacyclooctenes (2) instead (Scheme 1)
The elimination reactions were carried out with é, the dichloropropellanes which are func-
tional equivalents of the corresponding chloropropellenes 4. The rational synthesis of 3,
incidentally, opens a practical preparative route to 1. The bicyclic precursor 3 was obtained
by flow pyroly51s3 (N2; 2850C) of the mono-addition product (g) of dlchlorocarbene4 to 1,2-
dimethylenecycloheptane (1)5; dichlorocarbene addltion6 to 3 gave §, which was reacted with 2
equivalents of triphenyltin hydr1de7 to give a mixture of products, from which the main com-
ponents 3Ja and 3h were 1solated by preparative g.l.c. (1.5 m, 10% Carbowax-20M on Chromosorb-
WH, 1SOOC). The stereochemical assignment of 3a and 3b was based on the close resemblance of
their NMR—spectra8 with those of analogous compounds in the [4.3.l1]propellane series, for

which the stereochemistry was unambiguously determined by X-ray crystallography.2
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Treatment of }2. with 1 equivalent t-BuOK in DMSO at room temperature for 16 hours gave -‘\1-?;
which on treatment with an excess of the base, gave a mixture of ‘2‘ and ~2“ (ratios 2SOC/16 h 1:3;
4OOC/4 h ca. 3:2). When 3b was reacted with an excess of t-BuOK under the same reaction con-
ditions as 3a, 1 was formed as the only product in nearly quantitative yield;even with lessbase
no traces of f‘l}g could be detected. According to the 13C NMR spectrum, 2 is a mixture of at
least 2 isomers, probably rapidly equilibrating by 1,5-hydrogen shifts. For the same reason,

3‘ could not be separated by g.l.c.: only one peak with the NMR spectrum of the mixture was ob-
served. The structure assignment of 2 is mainly based on their Diels-Alder adducts

with hexafluorobut-2-yne (HFB) ; the adducts were obtained (CHC1l 25°C, 1 h) as a mix-

3!
ture of three isomeric compounds. The two main products, 9 (30%) and 10 (60%) were separated
by g.l.c. and identified by their NMR8 and mass spectra; additional proof for the structure

of lg was obtained from its partial hydrogenation to 11; 11 was identical with the hydrogena-

tion product of 12 which was synthesized by an independent route fram 13 (cf. 5). (Scheme 2).
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The exclusive formation of ’_1_ fram 22 can easily be understood; the first and rate determi-
ning step 1s presumably formation of 4b; deprotonation of _ﬂE at the allylic position followed
or accompanied by fast loss of chloride and disrotatory opening of the cyclopropane ring in
accord with the Woodward-Hoffmann-DePuy rule9 leads to l. The interpretation of the transfor-
mation from 4a to 1 and 2 1s less straightforward. In the first place, both products are com-
pletely different from the Dewar benzene found as the sole product from the lower hamolog of
'4\132. It 1s conceivable that benzvalene 14 is an intermediate; 1t could be formed from 4a via
either the allylic anion }é or the carbene }élo Cleavage of bonds @ and @ would lead to
}‘, while cleavage of bonds @ and @ , equivalent to a "retro carbene reactn_on"ll'12 would
lead to carbene 17 which by CH-insertion (directly or via a fulvene13) can react to furnish 2.

An alternative route from 16 to 1 could proceed via the highly twisted allene 18
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